集合論問題集

2 集合

1. A, B を集合とする。
 (1) $x \in A \cap B$ であることを定義を書け。
 (2) $x \in A \cup B$ であることを定義を書け。
 (3) $A \subseteq B$ であることを定義を書け。
 (4) $A = B$ であることを定義を書け。
 (5) $A - B$ の定義を書け。

2. $A = \{1, 2, 3, 5, 7, 9\}, B = \{2, 3, 6, 7, 8\}$ であるとき、$A \cap B, A \cup B$ をそれぞれ求めよ。

3. A を 4 の倍数全体の集合、B を 6 の倍数全体の集合とする。このとき $A \cap B$ を決定せよ。

4. $A \subseteq C$ かつ $B \subseteq C$ であるならば、$A \cup B \subseteq C$ であることを示せ。

5. A を集合とする。$A \cap \phi = \phi, A \cup \phi = A$ を示せ。

6. 集合族 $\{A_{\lambda}\}_{\lambda \in \Lambda}$ を考える。ただし A_{λ} は集合 M の部分集合とし、補集合は M で考えることにする。
 (1) $x \in \bigcup_{\lambda \in \Lambda} A_{\lambda}$ の定義を書け。
 (2) $(\bigcup_{\lambda \in \Lambda} A_{\lambda})^{c} = \bigcap_{\lambda \in \Lambda} A_{\lambda}^{c}$ (De Morgan の法則) を証明せよ。

7. $A \subseteq B$ とする。補集合は B で考えることにして以下を証明せよ。
 (1) $(A^{c})^{c} = A$
 (2) $A \cup B = B$
 (3) $A \cup A^{c} = B$
 (4) $A^{c} \cap A = \phi$
 (5) $\phi^{c} = B$

8. $(A \cup B)^{c} = A^{c} \cap B^{c}$ を示せ。ただし A, B は集合 M の部分集合とし、補集合は M で考えることにする。

9. $(A \cap B)^{c} = A^{c} \cup B^{c}$ を示せ。ただし A, B は集合 M の部分集合とし、補集合は M で考えることにする。

10. $A \cap B \subseteq C$ ならば $B \subseteq A^{c} \cup C$ であることを証明せよ。ただし A, B, C は集合 M の部分集合とし、補集合は M で考えることにする。

11. $A \cap C = B \cap C$ かつ $A \cup C = B \cup C$ であるならば、$A = B$ であることを証明せよ。

12. 集合 X の部分集合 A, B について $A \cap B = \phi$ であることと $A \subseteq X - B$ であることは同値であることを示せ。

13. 直積集合 $A \times B$ とは何か。その定義を書け。

14. $A = \{1, 2, 3\}, B = \{a, b\}$ であるとき $A \times B$ の元をすべて書け。ただし $a \neq b$ とする。

15. $A = \{a, b, c\}$ という集合のべき集合 2^{A} を具体的に書け。ただし $a \neq b, a \neq c, b \neq c$ とする。

16. 自然数 n に対して $A_{n} = \{m \in \mathbb{N} \mid m \leq n\}$ とおく。
 (1) $\bigcup_{n \in \mathbb{N}} A_{n}$ を求め、それが正しいことを証明せよ。
 (2) $\bigcap_{n \in \mathbb{N}} A_{n}$ を求め、それが正しいことを証明せよ。

17. $A \subseteq \mathbb{N}$ とする。A が無限集合であることを論理記号を使って特徴付けよ。

18. 自然数 \mathbb{N} で添字付けられた集合の族 $\{A_{n} \mid n \in \mathbb{N}\}$ に対して
 $$B_{m} = \bigcup_{j=m}^{\infty} A_{j}, \quad C_{m} = \bigcap_{j=m}^{\infty} A_{j}$$
 とおく。このとき次を示せ。
 (1) $\bigcap_{m=1}^{\infty} B_{m}$ は無数に多くの A_{n} に含まれる元の全体である。
 (2) $\bigcup_{m=1}^{\infty} C_{m}$ はある番号以上のすべての A_{n} に含まれる元の全体である。
 (3) $m > n$ ならば $A_{m} \subseteq A_{n}$ であるとする。このとき $\bigcap_{m=1}^{\infty} B_{m} = \bigcup_{m=1}^{\infty} C_{m}$ であることを示せ。
集合論問題集・解答例と解説

2 集合

1. (1) \(x \in A \cap B \iff \{ x \in A \text{かつ} x \in B \} \)
 (2) \(x \in A \cup B \iff \{ x \in A \text{または} x \in B \} \)
 (3) \(A \subset B \iff \{ x \in A \text{ならば} x \in B \} \)
 (4) \(A = B \iff \{ x \in B \text{かつ} A \supset B \} \)
 (5) \(\{ a \mid a \in A \text{かつ} a \notin B \} \)

定義はきちんと覚えること。定義を知らないとなのにもできない。\(A - B \) は \(A \setminus B \) と書かれることも多い。

2. \(A \cap B = \{ 2, 3, 7 \} \), \(A \cup B = \{ 1, 2, 3, 5, 6, 7, 8, 9 \} \).

3. \(A \cap B \) は 12 の倍数全体の集合。

4. \(x \in A \cup B \) とする。このとき、\(x \in A \) または \(x \in B \) である。\(x \in A \) のとき \(A \subset C \) より \(x \in C \) であり、\(x \in B \) のとき \(B \subset C \) より \(x \in C \) である。よって、いずれの場合も \(x \in C \) である。以上より \(A \subset C \) かつ \(B \subset C \) ならば \(A \cup B \subset C \) が成り立つ。

5. \(A \cap \phi = \phi \) の証明
 \(\cap \) \(\{ x \in A \iff x \in A \cap \phi \} \) は、\(x \in \phi \) が偽なので、真である。よって \(A \cap \phi \supset \phi \) である。
 \(\cap \) 命題 \(\{ x \in A \cap \phi \} \) は \(\{ x \in A \text{かつ} x \in \phi \} \) と同値で、\(x \in \phi \) が偽なので、偽である。よって命題 \(\{ x \in A \cap \phi \} \) は真となり \(A \cap \phi \subset \phi \) である。
 よって \(A \cap \phi = \phi \) である。

\(A \cup \phi = A \) の証明
 \(\cup \) \(x \in A \) とする。このとき \(\{ x \in A \text{または} x \in \phi \} \) は真となり \(x \in A \cup \phi \) である。よって \(A \cup \phi \supset A \) である。
 \(\cup \) \(x \in A \cup \phi \) とする。\(x \in A \) または \(x \in \phi \) である。\(x \in \phi \) が偽であるから \(x \in A \) となる。よって \(A \cup \phi \subset A \) である。
 以上より \(A \cup \phi = A \) である。

6. (1) \(\lambda \in \Lambda \) が存在して \(x \in A_{\lambda} \) である。
 (2) \(\cap \) \(x \in (\bigcup_{\lambda \in \Lambda} A_{\lambda})^{c} \) とする。\(1 \) の否定に注意すれば「任意の \(\lambda \in \Lambda \) に対して \(x \notin A_{\lambda} \)」である。したがって「任意の \(\lambda \in \Lambda \) に対して \(x \notin A_{\lambda}^{c} \)」となり \(x \in \bigcap_{\lambda \in \Lambda} A_{\lambda}^{c} \) である。よって \((\bigcup_{\lambda \in \Lambda} A_{\lambda})^{c} \subset \bigcap_{\lambda \in \Lambda} A_{\lambda}^{c} \) となる。
 \(\cup \) \(x \in \bigcap_{\lambda \in \Lambda} A_{\lambda}^{c} \) とする。「任意の \(\lambda \in \Lambda \) に対して \(x \notin A_{\lambda}^{c} \)」すなわち「任意の \(\lambda \in \Lambda \) に対して \(x \notin A_{\lambda} \)」である。この否定は「\(\lambda \in \Lambda \) が存在して \(x \in A_{\lambda} \)」であるから、\(x \in (\bigcup_{\lambda \in \Lambda} A_{\lambda})^{c} \) となる。これにより \((\bigcup_{\lambda \in \Lambda} A_{\lambda})^{c} \supset \bigcap_{\lambda \in \Lambda} A_{\lambda}^{c} \) となる。
 よって \((\bigcup_{\lambda \in \Lambda} A_{\lambda})^{c} = \bigcap_{\lambda \in \Lambda} A_{\lambda}^{c} \) となる。

7. (1) \(\cap \) \(a \in A \) とする。このとき \(a \notin A_{c} \) なので \(a \in (A_{c})^{c} \) である。よって \((A_{c})^{c} \subset A \) となる。
 \(\cup \) \(a \in B \) で \(a \in (A_{c})^{c} \) とする。\(a \notin (A_{c})^{c} = B - A \) である。これは \(a \notin B \) または \(a \in A \) ということである。
 しかし \(a \in B \) なので \(a \in A \) となる。したがって \((A_{c})^{c} \subset A \) である。
 以上を併せて \(A = (A_{c})^{c} \) である。
 (2) \(\cup \) \(x \in A \cup B \) とする。\(x \in A \) または \(x \in B \) である。仮定 \(A \subset B \) だから \(x \in A \) ならば \(x \in B \) である。したがって \(x \in B \) である。\(A \cup B \subset B \) が成り立つ。
 一般に \(A \cup B \supset B \) は成り立つので \(A \cup B = B \) である。
 (3) \(\cap \) \(x \in A \cup A_{c} \) とする。\(x \in A \) または \(x \in A_{c} \) である。\(B \) が全体集合なので \(A \subset B, A_{c} \subset B \) である。したがって \(x \in B \) である。\(A \cup A_{c} \subset B \) となる。
 \(\cap \) \(x \in B \) とする。\(x \in A \) または \(x \notin A \) なので \(x \in A \cup A_{c} \) である。\(A \cup A_{c} \supset B \) となる。
 以上より \(A \cup A_{c} = B \) が成り立つ。
 (4) \(x \in B \) を任意にとる。\(x \in A^{c} \cap A \) 仮定する。このとき \(\{ x \in A \text{かつ} x \in A^{c} \} \) であり、これは \(\{ x \in A \text{かつ} x \notin A \} \) と同値である。一般に命題 \(P \) に対して \(P \land (\neg P) \) は偽であるから、\(\{ x \in A \text{かつ} x \notin A \} \) は偽である。
 よって \(x \notin A^{c} \cap A \) である。したがって \(A^{c} \cap A = \phi \) である。
 (5) \(x \in B^{c} \) とする。\(x \notin B \) である。全体集合を \(B \) としているので \(x \in B \) である。これは矛盾である。したがって \(B^{c} = \phi \) である。両辺の補集合をとると \(B = (B^{c})^{c} = \phi^{c} \) である。
8. \(\subset \) \(x \in (A \cup B)^c \) とする。\(x \not\in A \cup B \) である。したがって、\(x \not\in A \) かつ \(x \not\in B \) となり、\(x \in A^c \cap B^c \) である。
\(\supset \) \(x \in A^c \cap B^c \) とする。\(x \in A^c \) かつ \(x \in B^c \) である。すなわち \(x \not\in A \) かつ \(x \not\in B \) だから \(x \not\in A \cup B \) となる。したがって、\(x \in (A \cup B)^c \) である。

以上より \((A \cup B)^c = A^c \cap B^c \) である。

9. 問 8 より、\((A \cup B)^c = (A^c)^c \cap (B^c)^c = A \cap B \) であるから、両辺の補集合をとって \((A \cap B)^c = ((A^c)^c)^c \cap ((B^c)^c)^c = A^c \cup B^c \) である。

10. \(x \in B \) とする。問 7 (3) より \(x \in A \) かつ \(x \not\in A^c \) である。\(x \in A \) のとき \(x \in A \cap B \) であり、仮定 \(A \cap B \subset C \) より \(x \in C \) となる。したがって \(x \in A^c \) または \(x \in C \) である。したがって \(B \subset A^c \cup C \) である。

11. \(a \in A \) とし \(a \in B \) となることを示す。\(a \in A \cap C = B \cup C \) なので \(a \in B \) または \(a \in C \) である。\(a \in C \) とすれば \(a \in A \cap C = B \cap C \) であるから \(a \in B \) である。よっていずれの場合も \(a \in B \) となり \(A \subset B \) である。

同様に \(B \subset A \) も示され \(A = B \) となる。

12. \(A \cap B = \emptyset \) と仮定する。\(x \in A \) とする。条件より \(A \cap B = \emptyset \) だから \(x \not\in B \)、すなわち \(x \not\in X - B \) よって \(A \subset X - B \) である。

\(A \subset X - B \) とする。\(A \cap B \subset \emptyset \) は空集合の定義から成立つので \(A \cap B \subset \emptyset \)、すなわち \(A \cap B = \emptyset \) を示す。\(x \in A \cap B \) すると \(x \in A \subset X - B \) なので \(x \not\in B \) となり、これは矛盾である。よって \(A \cap B = \emptyset \) である。

13. \(A \times B = \{ (x,y) | x \in A \ y \in B \} \)

14. \((1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c) \)

15. \(2^{A} = \{ \phi, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ b, c \}, \{ c, a \}, A \} \)

\(A \) には 3 個の元があるので \(2^{3} \) で 8 個部分集合が存在します。

16. (1) \(\bigcap_{n \in N} A_{n} = N \)

\(\subset \) 任意の \(A_{n} \) は \(N \) の部分集合だから、\(\bigcap_{n \in N} A_{n} \subset N \) である。
\(\supset \) \(x \in N \) とする。\(x \leq x \) だから、\(x \in A_{x} \) である。したがって \(x \in \bigcap_{n \in N} A_{n} \) となる。よって \(\bigcap_{n \in N} A_{n} \supset N \) となる。

以上から \(\bigcap_{n \in N} A_{n} = N \) が成り立つ。

(2) \(\bigcap_{n \in N} A_{n} = \{ 1 \} \)

\(\subset \) 任意の \(n \in N \) に対して、\(A_{n} \supset 1 \) より、\(\bigcap_{n \in N} A_{n} \supset 1 \) である。よって \(\bigcap_{n \in N} A_{n} \supset \{ 1 \} \) である。
\(\supset \) 次に \(\bigcap_{n \in N} A_{n} \subset \{ 1 \} \) を対偶によって示す。\(1 \neq x \in N \) について \(x \not\in \bigcap_{n \in N} A_{n} \)、すなわち、ある \(n \in N \) に対して \(x \not\in A_{n} \) をいえばよい。\(x \geq 2 \) なので \(x \not\in \{ 1 \} = A_{1} \) である。よって \(x \not\in \{ 1 \} \) ならば \(x \not\in \bigcap_{n \in N} A_{n} \) である。

以上から、\(\bigcap_{n \in N} A_{n} = \{ 1 \} \) が成り立つ。

(対偶を使わない \(\bigcap_{n \in N} A_{n} \subset \{ 1 \} \) の証明)
\(a \in \bigcap_{n \in N} A_{n} \) とする。任意の \(n \in N \) に対して \(a \in A_{n} \) であるから、特に \(a \in A_{1} = \{ 1 \} \) である。よって \(a = 1 \) であり \(a \in \{ 1 \} \) である。したがって \(\bigcap_{n \in N} A_{n} \subset \{ 1 \} \) となる。

17. \(\forall a \in N, \exists b \in A, a \leq b \)

18. (1) \(B = \bigcap_{m=1}^{\infty} B_{m} \) とおく。

無数に多くの \(A_{n} \) に含まれる元の全体からなる集合を \(T \) とおく。\(a \not\in S \) ということは、「\(a \in A_{n} \) となる \(n \in N \) が有限個しかない」ということで、これは「ある \(N \in N \) が存在して \(n > N \) ならば \(a \not\in A_{n} \) ということである。論理記号で書けば「\(\exists N \in N(\forall n \in N(n > N \Rightarrow a \not\in A_{n})) \)」である。\(a \in A \) はその否定であるから、「\(\forall N \in N(\exists n \in N(n > N) \land (a \in A_{n})) \)」である。

\(B = S \) を示す。

\(\subset \) \(a \in B \) とする。\(N \in N \) を任意に取り固定する。\(B \) の定義より \(a \in B_{N+1} = \bigcup_{j=N+1}^{\infty} A_{j} \) である。よって、ある \(k > N + 1 > N \) があって \(a \in B_{k} \) である。上記の考察から \(a \in S \) となる。したがって \(B \subset S \) である。
\(\supset \) \(a \in S \) とする。\(m \in N \) を任意に取り固定する。このとき \(a \in B_{m} \) を示せばよい。\(a \in S \) であるから、上記の考察から、ある \(k > m \) があって \(a \in A_{k} \) である。このとき \(a \in A_{k} \subset \bigcup_{j=m}^{\infty} A_{j} = B_{m} \) である。よって \(a \in B \) である。したがって \(B \subset S \) である。

以上より \(B = S \) である。

(2) \(C = \bigcup_{m=1}^{\infty} C_{m} \) とおく。ある番号以上のすべての \(A_{n} \) に含まれる元の全体からなる集合を \(T \) とおく。\(C = T \) を示す。
(3) $a \in C$ とする。このとき、ある $k \in \mathbb{N}$ があって $a \in C_k = \bigcap_{j=k}^{\infty} A_j$ である。したがって、$\ell \geq k$ なる任意の $\ell \in \mathbb{N}$ に対して $a \in A_\ell$ であり、よって $a \in T$ である。したがって $C \subseteq T$ である。

(2) $a \in T$ とする。T の定義より、ある $k \in \mathbb{N}$ があって $\ell \geq k$ ならば $a \in A_\ell$ である。したがって

$$a \in \bigcap_{\ell=k}^{\infty} A_\ell = C_k \subseteq \bigcup_{m=1}^{\infty} C_m = C$$

である。よって $C \supseteq T$ である。

以上より $C = T$ である。

(3) B, C は (1), (2) で定めたものとする。$B = C$ を示す。

(1) $b \in B$ とする。$m \in \mathbb{N}$ を取って固定する。B の定義により $b \in B_m = \bigcup_{j=m}^{\infty} A_j$ である。よって、ある $k \geq m$ があって $b \in A_k$ となるが、仮定より $A_k \subseteq A_m$ なので $b \in A_m$ である。したがって、任意の $m \in \mathbb{N}$ について $b \in A_m$ となる。よって $b \in \bigcap_{m=1}^{\infty} A_m = C_1 \subseteq C$ である。したがって $B \subseteq C$ である。

(2) $c \in C$ とする。$m \in \mathbb{N}$ を任意に取り固定する。C の定義により、ある $k \in \mathbb{N}$ があって $c \in C_k = \bigcap_{j=k}^{\infty} A_j$ である。よって $\ell \geq k$ なる任意の $\ell \in \mathbb{N}$ に対して $c \in A_\ell$ である。$n = \max \{m, k\}$ とおく。$n \geq k$ より $c \in A_n$ である。また $n \geq m$ と仮定により $A_n \subseteq A_m$ である。更に $A_m \subseteq B_m$ である。よって $c \in B_m$ となる。$m \in \mathbb{N}$ は任意に取って固定したものだったから $c \in \bigcap_{m=1}^{\infty} B_m = B$ である。$B \supseteq C$ が成り立つ。

以上より $B = C$ である。