代数入門問題集 [20070702]

4 多項式環、体

- 1. 標数 p>0 の体 F の任意の二元 a,b に対して $(a+b)^p=a^p+b^p$ が成り立つことを示せ。
- 2. F を標数 p>0 の有限体とする。写像 $f:F\to F$ $(f(a)=a^p)$ は全単射であることを示せ。
- 3. 元数が 4 の有限体 \mathbb{F}_4 を構成し、その加法と乗法に関する演算表を書け。
- 4.~K を体とし f(x)~(
 eq 0) を n 次の K 係数多項式とする。このとき f(a)=0 となる $a\in K$ は高々 n 個であることを示せ。(f(a)=0 となる $a\in K$ を f(x) の根という。)
- 5. K を体とし、f(x) を K 係数多項式とする。 $f(x) = \sum_{i=0}^n a_i x^i$ に対して $f'(x) = \sum_{i=1}^n i a_i x^{i-1}$ とおいて、これを f(x) の形式的な微分という。
 - (1) 多項式の形式的な微分についても、積の微分に関する公式 (fg)'=f'g+fg' は成り立つことを示せ。
 - (2) f(x) が重根 a をもつことと f(a)=f'(a)=0 となることが同値であることを示せ。ただし a が f(x) の重根であるとは、多項式 g(x) が存在して $f(x)=(x-a)^2g(x)$ と書けることとする。
- 6.~K を体とする。写像 $f:K\to K$ が多項式写像であるとは、ある K 係数多項式 F が存在して、任意の $a\in K$ に対して f(a)=F(a) となることとする。K が有限体であるとき、任意の写像 $f:K\to K$ は多項式写像であることを示せ。
- 7. 体 K 上の二つの多項式で、多項式としては異なり、等しい多項式写像を定めるものを具体的に一つ答えよ。
- 8. $\sqrt{2}+\sqrt{3}$ を根にもつ次数最小で最高次係数が 1 の有理数係数多項式を求めよ。
- 9. $\mathbb{Q}[\sqrt{2}]=\{a+b\sqrt{2}\mid a,b\in\mathbb{Q}\}$ とおく。 $\mathbb{Q}[\sqrt{2}]$ は通常の演算で体であることを示せ。
- 10. R を整域とし R の部分集合 S は
 - $1 \in S$, $0 \notin S$
 - $a,b \in S$ $ab \in S$

を満たすものとする。このとき S を R の積閉集合という。直積集合 $S \times R$ に sr' = s'r のときに $(s,r) \sim (s',r')$ として関係 \sim を定める。

- (1) \sim は同値関係であることを示せ。
- (2) (s,r) を含む \sim による同値類を r/s と書くことにする。また同値類全体の集合を $S^{-1}R$ と書く。 $S^{-1}R$ に加法と乗法を

$$r/s + r'/s' = (rs' + r's)/(ss'), \quad (r/s)(r'/s') = (rr')/(ss')$$

によって定めることができることを示せ。

- (3) 上の演算が、加法に関する交換法則、結合法則、乗法に関する結合法則、分配法則を満たすことを示せ。
- (4) 以上より $S^{-1}R$ は環の構造をもつ。これを R の S による商環という。特に S として $R-\{0\}$ をとれば、これ は積閉集合である。このときの商環 $S^{-1}R$ は体であることを示せ。(この体を整域 R の商体という。)
- (5) $R=\mathbb{Z}$ のとき、その商体は何かを考えよ。
- 11. (1) 整域 R 上の一変数多項式環 R[x] はまた整域であることを示せ。
 - (2) 整域 R 上の n 変数多項式環 $R[x_1,x_2,\cdots,x_n]$ は整域であることを示せ。
- 12. *K* を体とする。
 - (1) K 上の一変数多項式環 K[x] は単項イデアル整域 ($\S 3$ 問 $\ref{3}$ 参照) であることを示せ。
 - (2) $f(x),g(x)\in K[x]$ に対して $(f(x),g(x))=\{f(x)a(x)+g(x)b(x)\mid a(x),b(x)\in K[x]\}$ とおくと、(f(x),g(x)) は K[x] のイデアルであることを示せ。
 - (3) (1), (2) より、f(x), $g(x) \in K[x] \{0\}$ に対して (f(x),g(x)) = (h(x)) となる $h(x) \in K[x]$ が存在する。最高次係数で割って h(x) の最高次係数は 1 であると仮定してよい。このとき h(x) を f(x) と g(x) の最大公約元といい、 $\gcd(f,g)$ と書くことにする。f(x) = g(x)q(x) + r(x), $\deg r(x) < \deg f(x)$ とするとき $\gcd(f,g) = \gcd(g,r)$ であることを示せ。
- 13.~K を体とする。 $f(x) \in K[x]$ を既約な多項式とする。このとき K[x]/(f(x)) は体であることを示せ。

- 14. $\mathbb{Q}[x]/(x^2-2)$ は本質的に $\mathbb{Q}[\sqrt{2}]$ (問 9 参照) と同じ体であることを示せ。(本質的に同じ体であるとは、集合としての全単射で、和と積を保つものが存在することをいうこととする。このとき二つの体は同型であるという。)
- 15. $\mathbb{F}_2=\mathbb{Z}/2\mathbb{Z}$ (元数 2 の有限体) とする。
 - (1) \mathbb{F}_2 上の既約な 2 次多項式 f(x) を見付けよ。
 - (2) $\mathbb{F}_2[x]/(f(x))$ は本質的に問 3 の体 \mathbb{F}_4 と同じ体であることを示せ。

代数入門問題集・解答例と解説 [20070702]

4 多項式環、体

- $1. \ (a+b)^p = \sum_{i=0}^p \binom{p}{i} a^i b^{p-i}$ であるが、 $i \neq 0, \ p$ のとき $p \mid \binom{p}{i}$ なので主張が成り立つ。
- 2. f(a) = f(b) とする。 $a^p b^p = 0$ である。
 - p=2 ならば $a^2-b^2=a^2+b^2=(a+b)^2=(a-b)^2$ である。
 - $p \neq 2$ ならば p は奇数なので $a^p b^p = a^p + (-b)^p = (a-b)^p$ である。

よっていずれの場合も $0=(a-b)^p$ となる。F は体なので a-b=0、すなわち a=b となる。よって f は単射である。 $|F|<\infty$ なので F から F への単射 f は全単射である。

3. \mathbb{F}_4 は \mathbb{F}_2 上 2 次元ベクトル空間の構造をもつので、その基底を 1, α とする。このとき $\mathbb{F}_4 = \{0, 1, \alpha, 1+\alpha\}$ である。また \mathbb{F}_4 の乗法群 $\mathbb{F}_4 - \{0\}$ は位数 3 の群になるので、それは巡回群である。以上より、以下の演算表を得る。

+	0	1	α	$1 + \alpha$	×	0	1	α	$1 + \alpha$
0	0	1	α	$1 + \alpha$	0	0	0	0	0
1	1	0	$1 + \alpha$	α	1	0	1	α	$1 + \alpha$
α	α	$1 + \alpha$	0	1	α	0	α	$1 + \alpha$	1
$1 + \alpha$	$1 + \alpha$	α	1	0	$1 + \alpha$	0	$1 + \alpha$	1	α

 $(-般に有限体 \mathbb{F}_q \ の乗法群 \mathbb{F}_q - \{0\}$ は素数位数でなくても巡回群になる。)

4. 次数に関する帰納法で示す。次数が 0 すなわち f(x) が 0 でない定数ならば根はないので、主張は正しい。 f(x) を 1 次以上の次数の多項式とする。 f(x) が根をもたなければ主張は成り立つので、 f(x) は根 a をもつとする。因数定理により f(x)=(x-a)g(x) と書けて g(x) の次数は n-1 である。 $b\neq a$ がやはり f(x) の根であるとすると、0=f(b)=(b-a)g(b) である。 $b-a\neq 0$ と K が体、よって整域であることにより g(b)=0 である。したがって f(x) の根は a であるか、または g(x) の根である。帰納法の仮定により g(x) の根は高々 n-1 個なので、 f(x) の 根は高々 n 個である。

 $(a \in K$ が多項式 f(x) の根であることと f(x) = (x-a)g(x) となる多項式 g(x) が存在することは同値である。これを因数定理という。)

5. (1) 形式的な微分が和とスカラー倍を保つこと、すなわち $(f+g)'=f'+g',\,(af)'=af'\,(a\in K)$ となること、は計算によってすぐに確かめることができる。

単項式の積 $x^n=x^mx^{n-m}$ について示す。 $(x^n)'=nx^{n-1}$ であり、また $(x^m)'x^{n-m}+x^m(x^{n-m})'=mx^{n-1}+(n-m)x^{n-1}=nx^{n-1}$ なので、この場合には $(x^n)'=(x^m)'x^{n-m}+x^m(x^{n-m})'$ は成り立つ。

一般の場合を考える。 $f(x) = \sum_{i=0}^m a_i x^i, \ g(x) = \sum_{j=0}^n b_j x^j$ とする。

$$(f(x)g(x))' = \sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j (x^{i+j})' = \sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j ((x^i)'(x^j) + (x^i)(x^j)'$$

$$= \sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j (x^i)'(x^j) + \sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j (x^i)(x^j)' = f'(x)g(x) + f(x)g'(x)$$

が成り立つ。

(2) a が f(x) の重根であるとすると $f(x)=(x-a)^2g(x)$ と書ける。このとき $f'(x)=2(x-a)g(x)+(x-a)^2g'(x)$ なので f(a)=f'(a)=0 である。

f(a) = f'(a) = 0 と仮定する。因数定理より f(x) = (x-a)g(x) と書ける。f'(x) = g(x) + (x-a)g'(x) より 0 = f'(a) = g(a) である。よって因数定理より g(x) = (x-a)h(x) と書くことができ、a は f(x) の重根である。

 $6.\ K$ の元数を q とする。K から K への写像は q^q 個ある。一方で、q-1 次以下の多項式も q^q 個あるので、これらがすべて写像として異なることをいえばよい。

f(x),g(x) を q-1 次以下の多項式とし、K から K への写像として等しいと仮定する。このとき h(x)=f(x)-g(x) も q-1 次以下の多項式であって、K の任意の元が h(x) の根になる。 $h(x)\neq 0$ ならば、問 4 によってその根の数は高々 q-1 個であり、これは矛盾である。よって h(x)=0、すなわち f(x)=g(x) となる。

(多項式 $x^q - x$ は K のすべての元を根にもち、写像としては 0 と等しくなる。)

- 7. (問 6 参照。) $K=\mathbb{Z}/2\mathbb{Z}$ とする。このとき $f(x)=x^2+x$ は多項式としては 0 ではないが $f(0)=0^2+0=0$, $f(1)=1^2+1=0$ であり、0 と同じ多項式写像を与える。
- 8. $a = \sqrt{2} + \sqrt{3}$ とおく。

$$a^2 = 5 + 2\sqrt{6}$$
, $a^3 = 11\sqrt{2} + 9\sqrt{3}$, $a^4 = 49 + 20\sqrt{6}$

である。ここで $\{1,a\},\ \{1,a,a^2\},\{1,a,a^2,a^3\}$ はいずれも $\mathbb Q$ 上一次独立であることが簡単に分かり、したがって a は 3 次以下の多項式の根にはならない。4 次式については $a^4-10a^2+1=0$ が成り立つことが分かるので、求める多項式は x^4-10x^2+1 である。

$$(x^4 - 10x^2 + 1 = 0$$
 の根は $\pm \sqrt{2} \pm \sqrt{3}$ である。)

9. $\mathbb{Q}[\sqrt{2}]$ が通常の和、差、積で閉じていること、すなわち \mathbb{C} の部分環であることは明らかである。したがって $0 \neq x = a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ が逆元をもつことを示せばよい。もちろん x は \mathbb{C} では逆元をもち、それは

$$x^{-1} = \frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{(a + b\sqrt{2})(a - b\sqrt{2})} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2}$$

である。よって x^{-1} も $\mathbb{Q}[\sqrt{2}]$ の元であり、したがって $\mathbb{Q}[\sqrt{2}]$ は体である。

(同様にして、一般に $\mathbb{Q}[\sqrt{m}] = \{a + b\sqrt{m} \mid a, b \in \mathbb{Q}\}\ (m \in \mathbb{Z})$ も体であることが分かる。)

- 10. (1) 対称律、反射律は明らかである。推移律を示す。 $(s,r)\sim (s',r')$ かつ $(s',r')\sim (s'',r'')$ と仮定する。このとき sr'=s'r,s'r''=s''r' である。したがって ss'r''=ss''r'=s's''r である。ここで $s'\in S$ より $s'\neq 0$ で、かつ R が整域なので sr''=s''r となる。よって $(s,r)\sim (s'',r'')$ が成り立つ。
 - (2) $(r,s)\sim (a,b), (r',s')\sim (a',b')$ と仮定する。仮定より rb=sa, r'b'=s'a' が成り立っている。したがって

$$(rs' + r's)bb' = rs'bb' + r'sbb' = ss'ab' + ss'a'b = ss'(ab' + a'b)$$

となり $(rs'+r's,ss')\sim (ab'+a'b,bb')$ が成り立つ。よって和は矛盾なく定義される。また rr'bb'=ss'aa' より $(rr',ss')\sim (aa',bb')$ であり、積も矛盾なく定義される。

- (3) [加法に関する交換法則、結合法則] 加法についての交換法則が成り立つことはすぐに分かる。(r/s+r'/s')+r''/s''=(rs'+r's)/ss'+r''/s''=(rs's''+r''ss''+r''ss''+r''ss'')/ss's'' であり r/s+(r'/s'+r''/s'')=r/s+(r's''+r''s')/s's''=(rs's''+r'ss''+r''ss'')/ss's'' であるから結合法則は成り立つ。
 - [乗法に関する結合法則] $(r/s \cdot r'/s') \cdot r''/s'' = (rr')/(ss') \cdot r''/s'' = (rr'r'')/(ss's'') = (r/s) \cdot (r'r''/s's'') = r/s \cdot (r'/s' \cdot r''/s'')$ であるから結合法則は成り立つ。
 - [分配法則] $(r/s+r'/s')\cdot r''/s''=(rs'+r's)/ss'\cdot r''/s''=(rr''s'+r'r''s)/ss's''=rr''s'/ss's''+r'r''s/ss's''$ ここで R が整域で $s\neq 0,$ $s'\neq 0$ であるから $(r/s+r'/s')\cdot r''/s''=rr''/ss''+r'r''/s's''=r/s\cdot r''/s''+r'/s''$ となる。
- (4) $S^{-1}R$ の零元は 0/1 であり、単位元は 1/1 であることに注意しておく。 $r/s \in S^{-1}R \{0\}$ とすると $0 \neq r \in R$, $0 \neq s \in R$ である。よって $s/r \in S^{-1}R$ となり $(r/s)(s/r) = 1_{S^{-1}R}$ となる。したがって 0 でない任意の元が正則元となり $S^{-1}R$ は体である。
- (5) ℤ の商体は有理数体 ℚ である。
- 11. (1) $f(x) = \sum_{i=0}^m a_i x^i, \ g(x) = \sum_{j=0}^n b_j x^j$ とし、 $f(x) \neq 0, \ g(x) \neq 0$ と仮定する。係数が 0 である項を略して $a_m \neq 0, \ b_n \neq 0$ と仮定してよい。このとき $f(x)g(x) = \sum_{k=0}^{m+n} \sum_{i+j=k} a_i b_j x^k$ であり、特に x^{m+n} の係数は $a_m b_n$ である。 $a_m \neq 0, \ b_n \neq 0$ で R が整域であることにより $a_m b_n \neq 0$ である。よって $f(x)g(x) \neq 0$ である。
 - (2) n に関する帰納法で示す。n=1 のときは (1) である。n>1 とする。 $R[x_1,x_2,\cdots,x_n]$ は $R[x_1,x_2,\cdots,x_{n-1}]$ 上一変数多項式環 $R[x_1,x_2,\cdots,x_{n-1}][x_n]$ と見ることができる。帰納法の仮定から $R[x_1,x_2,\cdots,x_{n-1}]$ は整域であるから (1) より $R[x_1,x_2,\cdots,x_n]$ も整域である。
- 12. (1) I を K[x] の 0 でないイデアルとする。I の 0 でない元で、次数最小のものを f(x) とする。(f(x) は一意的ではないが、その一つをとり固定する。)

$$g(x) \in I$$
 とする。多項式の割り算を考えれば

$$g(x) = q(x)f(x) + r(x), \quad \deg(r(x)) < \deg(f(x))$$

となる $q(x), \ r(x) \in K[x]$ が存在する。ここで $r(x) = g(x) - q(x)f(x) \in I$ となるので、f(x) の次数の最小性 から r(x) = 0 である。したがって $g(x) \in f(x)K[x]$ である。よって $I \subset f(x)K[x]$ となる。一方で $f(x) \in I$ なので $f(x)K[x] \subset I$ は明らかに成り立ち I = f(x)K[x] となる。したがって I は単項イデアルである。問 11 より K[x] は整域なので K[x] は単項イデアル整域である。

(2) $\alpha(x),\beta(x)\in (f(x),g(x)),\ h(x)\in K[x]$ とする。 $\alpha(x)=f(x)a(x)+g(x)b(x),\ \beta(x)=f(x)a'(x)+g(x)b'(x)$ となる $a(x),\ a'(x),\ b(x),\ b'(x)\in K[x]$ が存在する。このとき

$$\alpha(x) - \beta(x) = f(x)(a(x) - a'(x)) + g(x)(b(x) - b'(x)) \in (f(x), g(x))$$
$$h(x)\alpha(x) = f(x)(h(x)a(x)) + g(x)(h(x)b(x)) \in (f(x), g(x))$$

であるから (f(x), g(x)) は K[x] のイデアルである。

- (3) (1) よりイデアルの次数最小の元はスカラー倍を除いて一意的に定まるので (f(x),g(x))=(g(x),r(x)) を示せば十分である。 $f(x)=g(x)q(x)+r(x)\in (g(x),r(x)),\ g(x)\in (g(x),r(x))$ であるから $(f(x),g(x))\subset (g(x),r(x))$ が成り立つ。また $g(x)\in (f(x),g(x)),\ r(x)=f(x)-q(x)g(x)\in (f(x),g(x))$ より $(f(x),g(x))\supset (g(x),r(x))$ が成り立つ。よって (f(x),g(x))=(g(x),r(x)) である。
- 13. $g(x) \in K[x]$ に対して $g(x) + (f(x)) \in K[x]/(f(x))$ を $\overline{g(x)}$ と書くことにする。 $\overline{g(x)} \neq 0$ 、すなわち $g(x) \not\in (f(x))$ と する。このとき $\overline{g(x)}$ が逆元をもつことを示せばよい。f(x) を割り切る多項式は 1 と f(x) 自身しかないので、問 12 に よって $\gcd(f(x),g(x))=1$ である。よって、やはり問 12 によって f(x)a(x)+g(x)b(x)=1 となる $a(x),b(x)\in K[x]$ が存在する。このとき $\overline{g(x)b(x)}=1$ となり、 $\overline{b(x)}$ が $\overline{g(x)}$ の逆元である。
- 14. 自然な全射 $\mathbb{Q}[x] o \mathbb{Q}[x]/(x^2-2)$ による $f(x) \in \mathbb{Q}[x]$ の像を $\overline{f(x)}$ と書くことにする。 $\overline{x^2} = \overline{2}$ に注意すれば、任意の $f(x) \in \mathbb{Q}[x]$ は $\overline{a+bx}$ $(a,b \in \mathbb{Q})$ と一意的に表されることが分かる。このとき $\Gamma: \mathbb{Q}[x]/(x^2-2) \to \mathbb{Q}[\sqrt{2}]$ を $\Gamma(\overline{a+bx}) = a+b\sqrt{2}$ と定めれば、これは全単射である。 Γ が和を保存することはすぐに分かる。また

$$\Gamma((\overline{a+bx})(\overline{c+dx})) = \Gamma((ac+2bd) + (ad+bc)x) = (ac+2bd) + (ad+bc)\sqrt{2}$$
$$= (a+b\sqrt{2})(c+d\sqrt{2}) = \Gamma(\overline{a+bx})\Gamma(\overline{c+dx})$$

となり、積を保存することも分かる。

- 15. (1) $x^2 + x + 1$ は既約である。(既約でないならば 0 または 1 を根にもたなくてはならない。)
 - (2) $\mathbb{F}_2[x]/(f(x))=\{\overline{0},\ \overline{1},\ \overline{x},\ \overline{1+x}\}$ である。加法、乗法の演算表を書けば問 3 の体と同じになることが分かる。 (実際、問 3 の解答例にある α は $\alpha^2+\alpha+1$ を満たしている。)